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Recently M. G. Crandall and P. L. Lions introduced the notion of
®viscosity solutions® of scalar nonlinear first order partial differential

equations. Viscosity solutions need not be differentiable anywhere and thus
are not sensitive to the classical problem of the crossing of characteristics.
The value of this concept is established by the fact that very general
existence, unigueness and continuous dependence results hold for viscosity

- solutions of many problems arising in fields of application. The notion of a
*"viscosity solution" admits several equivalent formulations. Here we look
more closely at two of these equivalent criteria and exhibit their virtues by
k both proving several new facts and reproving various known results in a

: simpler manner. Moreover, by forsaking technical generality we hereby provide
a more congenial introduction to this subject than the original paper.
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SOME PROPERTIES OF VISCOSITY SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS

M. G. Crandall, L. C. Evans' and P. L. Lions

Introduction

Recently two of us (see [2], [3]) defined a class of generalized
solutions of nonlinear scalar partial differential equations of the form
(0.1) Fly,u(y),Du(y)) =0 for ye 0 ,
where O is an open set in R®, F: 0 X RXx R" + R is continuous and

Du = (23-,...,23—) denotes the gradient of u. These generalized solutions -~
3y1 aym

called viscogity solutions in [2] - need not be differentiable anywhere, as
the only regularity required in the definition is continuity. M. G. Crandall
and P. L. Lions ([2]) utili?ed this new concept to establish uniqueness,
stability, and certain existence theorgms for a wide class of equations of the
form (0.1). In addition, P. L. Lions in [8] has extended these techniques to
obtain further and more general existence results.

Our goal here is first to look more closely at two alternative
definitions of solutions of (0.1), each of which was proved equivalent to the
"viscosity” notion in (2], and second to present some new properties of these
solutions. Although these alternative definitions were mentioned in (2], they
were not used there. Here we emphasize that they are more appealing in some
respects and more convenient for certain purposes than the one taken as basic

in [2] (see, e.g., Evans [6], which stimulated the current work). In

»
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particular, choosing appropriately each time one of these equivalent notions
we can simplify the proofs of several results given in [2). Furthermore, the
concept of viscosity solutions is closely related to some previous work by L.
C. Evans [5]. We should also point out that this paper is essentially self-
contained and makes easier reading than {2], as we forsake generality here.

Let us first formulate the definition of viscosity solutions in the form
we think the most appealing (even if not always the most convenient to use).
We begin by recalling that a runction u from O into R is said to be
differentiable at y, € 0, and that Du(y,) = p, € R®, if we have
(0.2) u(y) = ulyg) + pye(y=y,) + otly-y,l) -
Here a.b is the Euclidean scalar product of a and b, and g(y) =
o(ly-yq!) means

lim 9(y)ly-yo|'1 -0 .

Y*y,

Obviously (0.2) is the conjunction of the two relations

(0.3) 1im sup (u(y) - u(yo) - po°(y-yo)) ly-yul-1 <o
Y'Y,
and
(0.4) lim inf (u(y) = uly,) = py*(y=y,)) hr-arol-1 >0 .
'y,

It is well-known that if u is continuous, it may fail to be differentiable
at every y, € 0. Nevertheless, there are - as we will see below - many
choices of (yo,po) e 0 x X' for which (0.3) or (0.4) holds. It will thus be
convenient to give the following definition:

Definition: Let u be a function from O into R and let Yo € 0. Then
the superdifferential of u at Yo is the set, denoted by D+u(yo), of pg
e ®® such that (0.3) holds. Similarly the subdifferential of u at Yo is

the set, denoted by D-u(yo), of p, € ¥* such that (0.4) holds.
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In general, D*u(yo) are closed and convex sets. There is an obvious

relation between our "subdifferential™ and the notion used in convex

analysis. We have also learned that the subdifferentials used here were
previously employed by E. DeGiorgi, A. Marino, and M. Tosques in another

context in [4]. We may now define the concept of viscosity solution of (0.1):

Definition 1: A viscosity solution of

(0.1) P(y,uly),Du(y)) = 0 4in O

is a function u €@ C(0) satisfying

(0.5) Fly,uly),p) €0 vwye 0, vpentuly) ,
and
(0.6) P(y,u(y),p) 0 wyeO, vpe D-u(y) .

In a similar way u @ C(() is said to be a viscosity subsolution (resp.

supersolution) of (0.1) if (0.5) (resp. (0.6)) holds.

We will reprove in Section 1 that this is equivalent to the following

notion of solution of (0.1):

Definition 2: u @ C(0) is a viscosity solution of (0.1) provided for all

‘e c'(O),

(0.7) if u-¢ attains a local maximum at Y, © 0, then
r(yo,u(yo). D¢(yo)) <0

and

(0.8) if u~¢ attains a local minimum at Y, © 0, then

P(y,,uly,), Dé(y.)) >0 .
0 0 0

Moreover, each of these notions is equivalent to the one introduced in (2]}

(see Section 1).
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In Section 1 we also establish various properties of viscosity solutions,
such as, for example, the consistency with classical solutions. Section 2 is

devoted to a uniqueness result concerning equations of the type
(0.9) u+HDu) =f , xe R ,

while in SBection 4 we give a general uniqueness result for the initial value
problem

u, + H(DW) =0 , xeR,t>0 ,

u(x,0) = uo(x) e X € Rn "

Here Du denotes the gradient with respect to x (€ R®). Of course (0.10) is

a special case of (0.1) with 0 = R® x (0,+%®), y = (x,t), m = n+1,
In Section 3 we show that the well-known vanishing viscosity method
yields viscosity solutions; and finally in Section 5 we consider the relations

between viscosity solutions of (0.10) and nonlinear semigroup theory.

Let us recall that many of the results presented here have been already
proved in [2], but the proofs herein seem to be simpler (essentially due to
our freedom in choosing among the equivalent definitions of viscosity
solution). Bince the main point here is simplicity, we will not consider more
general Hamiltonians H than in (0.9) or (0.10). Technical generality

(e.g., H(x,t,u,Du) in (0.10)) is available in [2].
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1. Main Properties of Viscosity Solutions.

1.1, Equivalent definitions

s

» Theorem 1.1: Let u € C(0). Then the following are equivalent:
(i) u satisfies (0.5) and (0.6),
(11) u satisfies (0.7) and (0.8) for all ¢ e ¢'(0),

(1i1) u satisfies, for all ¢ € cl(O)(", $>0, and ke R,

if max ¢(u-k) > 0, then for some point Yy, at which ¢(u-k)
0

i
‘ (.1 Dé(y,)
attains its maximum, we have F(yo,u(yo), B TTAN (u(yo) -k)) €0
3 0
and

if wmin ¢(u-k) < 0, then for some point Y, at which ¢(u-k)
0

(1.2)

Dé(y,)
attains its minimum, we have P(yo,n(yo),

- ;?;—7— (u(yo) -k)) >0 .
0

Remark 1.1: It is easy to prove that in (ii) or (iii) we may replace
¢ e clo by ¢ € d:(O)- (See the proof of Theorem 3.1.)

Remark 1.2: Property (iii) is the original definition of viscosity solutions

i given in [2) (where the equivalence of (i), (ii), (iii) is also proved).
Remark 1.3: A more precise gtatement than Th. 1.1 asserts the equivalence of
i) u satisfies (0.5), ii) u satisfies (0.7) and iii) u satisfies (1.1). An

.%; ‘ analogous statement holds for supersolutions.

L

*)
c;(O) = (¢ € c'(0), the support of ¢ is a compact subset of §).




e e e i R ot o

Remark 1.4: Let us finally mention that we could define the notion of
viscosity subsoiutions for upper semi~continuous functions and most of the
results of [2] would still remain valid.

We will prove (i) <==> (ii). For the equivalence with (iii), see [2].
That (i) <==> (ii) is an immediate consequence of the following

Proposition 1.1: Let ue c(0), yye 0, pe RK"; then the following are

e 3 ERATIY P YY ML TP YO s s 3

equivalent:

(1) pe D+u(y°) (resp. p € D'u(yo))
and i
(i1) there exists ¢ € Cl(O) such that u-¢ has a local maximumm (resp.

minimum) at Yo and D¢(yo) = p.

i ia

Proof. The key fact is the following form [2, Lemma I.4) of a result of [4]:
Lemma 1.1: Let n € C¢(0) be differentiable at Yo © 0. Then there exists
1 .
't e ¢ (0) such that DY+(yo) = D?_(yo) = Dn(yo) and n-Y+(n-Y_) hag a .

strict local maximum (resp. minimum) value of zero at Yp°

i ay TRl T

Accepting this lemma, we prove Proposition 1.1. Assume p € D+u(y°).
set n(y) = {u(y) - uly,) - p‘(y—yo)}+, where r* denotes max(r,0). By
assumption n is differentiable at Yo, and Dn(yo) = 0, Let Y* e c'(O) be
as in Lemma 1.2. Then near Yq

{uty) - lutyg) + prly-y)1} = ¥ (y) €0
80 if $(y) = u(yo) + p°(y-yo) + Y*(y). u-¢ has a local maximum at y, and
DO(yo) = pe Thus (ii) implies (i). It is clear that (i) implies (ii), since
if u-¢ has a maximum at Yor then near Yo Wwe have
uly) € ulyg) = ¢lyy) + #(y) € ulyy) + Délyy)e(y=y,) + olly-y D) . .

+
This implies Dd(y,) € D u(y,). (We have dealt with D* and local maxima;

the situation for D~ and local minima is entirely the same.)




1.2 EBlementary goge_rtiu of viscosity solutions.

We begin with a aimple result which establishes the consistency
of the notions of viscosity and classical solutions.
Theorem 1.2:
(1) Let u e c'(0) be a classical solution of (0.1), that is
P(y,u(y),Du(y)) = 0 in 0, u e c1(0) .
Then u is a viscosity solution.
(ii) Let u be a viscosity solution of (0.1) which is differentiable at
some y, € 0. Then
F(ygsulyg),Dulyy)) =0
Remark 1.6: This result is proved in [2] (Corollary I.6). Analogous
statements hold for viscosity sub and supersolutions. Obviously we deduce
from (ii) above that if u is a viscosity solution of (0.1) and if
ue Wl")z(O) for p > m, then
F(y,u,Du) = 0 a.e. in 0 .
The proof of Theorem 1.2 is trivial, since if u is C1, then at every
point y @ 0, the super- and the subdifferentials coincide and
ptuly) = D u(y) = {Du(y)} .
In the same way, if u is a viscosity solution of (0.1) and is differentiable

at y e (, then D+u(y°) = D'u(yo) = {Du(yo)}.

o

We next reprove Theorem 1.10 of [2], which characterizes piecewise c!
viscogity solutions of F = 0. Let ( be divided in two open subsets 0+,
0_ bya c! surface T : 0 = 0+U O_ uTl. The unit normal to T at
Yo € I is denoted by nly,;) and is taken to point into 0+,

Theorem 1.3: Let u €@ C(0) and u = u, in 0,  uTl, u=u_ in 0_vuvr

1

where u,, u_ are of class C' in 0+u I, and 0_u T. Then u is a

viscosity solution of (0.1) if and only if the following conditions hold:




(a) u, and u_ are classical solutions of P =0 in O, and O_
respectively,

and

(b) 1if Yo erl, ryo ={ter: n(y°)°‘r = 0} is the tangent space to T

at y, and Py is the orthogonal projection of R® onto TYqgs then

if a= Du+(y°)'n(yo) < Du_(yo)'n(yo) = b, we have

(1.6)
r(yo,u(yo),PTDut(yo) + En(yo)) €0 for a<E<)H
and
if a = Du+(y°)'n(yo) >Du_(yo) -n(yo) = b, we have
(1.7)

Flygoulyy),PyDu, (yy) + Enlyy)) 20 for b<E<a .

Proof: Pirst note that the assumptions imply that PpDu, (yq) = P.I.Du_(yo)
for y, e I', whence PTDut(yo) is unambiguous. Now, by assumption, if
vyeOl, v 0_, then D+u(y) =D u(y) = {Du(y)}; therefore (a) is equivalent to
the satisfaction of (0.5) and (0.6) for y e O\I.
We are now going to prove that (b) is equivalent to (0.5) and (0.6) for
y e, 1In order to do so, we just need to compute D+\;(yo), D-u(yo) for
Yo e I'. By assumption we have
(1.8) u(y) = n(yo) + PTDu+(y°)-(y-yo) + (n(yo) 'Du+(yo)) (n(yo)°(y-y°))
+olly-y,l) if yeQ o T ;
and
(1.9) uly) = uly,) + P Du_(y,}°(y-y,) + (n{y,)°Du_(y,))*
*(nlyg)ely-yy)) + olly-y,l) if ye(Q v T .
On the other hand p e D+u(y°) if and only if
(1.10) uly) € ulyy) + pely=y,) + olly-yg|) =
= uly,) + Popely-y,) + (n(y°)°p)(n(yo)'(y-yo)) +

+ olly-y ) .

o w N . . . .o R .
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Recalling that PTDu*(yo) = PTDu_(yo) and that -P is of class c‘, one

deduces immediately that p € D+u(y0) if and only if

(1.11) P.p = PTDut(yo) and n(yo)-Du+(y°) < n(Yo)'p < n(yo)'Du_(yo) .

Thus

(1.12) D+u(y°) = {PTDut(yo) + &nly,): nly )eDu (y,) < & < n(y°)°Du_(y0)}
(and if n(y°)°Du+(yo) > n(yo)'Du_(yo), D+u(yo) is empty.)

In the same way, we find:

(1.13) D ulyy) = {pyDu (yy) + Enlyy): nlyy)eDu_(yy) € & < nlyg)epu (y)} .

It is then straightforward to complete the proof of Theorem 1.3.

Remark 1.7: It is worth noting that by the use of Definition 1 of viscosity

solutions the above proof of Theorem 1.3 is more direct than in [2). This

phenomenon is further illustrated by two easy results (the first is Corollary
I.8 and the second in Thm., I.2 of [2]).

Proposition 1.3: Let u be a viscosity solution of (0.1) and let ¢ € C1(R)

be such that @'(t) > 0 in R, ¢(R) = R. Then ¢(u) is a viscosity solution
of F(x,¥(v),¥'(v)Dv) = 0, where ¥ denotes 0-1.
Proof: This is immediate from the observations
D {e(u)(y )} = &' (uly ))D uly,)
0 0 o’ '’

o‘(¢(u)(y°)} = 0'(u(yo))0-u(y°) .

Proposition 1.4:

(a) Let u,v be viscosity subsolutions (resp. supersolutions) of (0.1).
Then w = max(u,v) (resp. w = min(u,v)) is a viscosity subsolution
(resp. supersolution) of (0.1).

(b) Let (un)n>1 be viscosity subsolutions (resp. supersolutions) of (0.1).

If w=supu (resp., inf u)e c(0), then w is a viscosity sub-
n>1 n>1

golution (resp. supersolution) of (0.1).




Proof: The proof of (a) is an immediate consequence of the remark
D+{max(u.v)}(y0) c D+u(yo) v D+v(y0)
(resp. D-{min(u,v)}(yo) < D-u(yo) U D-v(yo)). And (b) is a consequence of

(a) and of the following stability result., Observe that w_ = sup u
m2n2>1

converges uniformly on compact sets of ( to w, because of Dini's lemma.

Theorem 1.4: Let Fn(y,t,p) be a sequence of continuous functions such

that Pn(y,t,p) converges uniformly on compact subsets of 0 x R x R" to some
function Fl(y,t,p). Let u, be a viscosity solution of F (y,u,,Du)) =0

in 0. We assume that u, converges uniformly on compact subsets of 0 to
some u. Then u is a viscosity solution of F(y,u,Du) = 0.

Proof. By Theorem 1.1, we need only to consider points of local maximum of

u-¢ for ¢ e c1(0). Let y, be such a point and let us prove that

(0.7) F(yo,u(yo),D¢(y0)) <0 .

Take Y € Cl(O) such that 0 € ¥ < 1 if y # Yo and W(yo) = 1., It is

clear that u - (¢-¥) attains a local strict maximum at Yo and thus for

n large enough, there will exist Y such that
L ($-¥) attains a local maximum at Y, ¢
’ -
Y, e 01 and Y, * ¥,

By assumption, we have
Foly ou (y ), Dé(y ) - D¥(y )) <0 ,
and we conclude since u“(yn) + u(yo) and D¢(yn) - DT(yn) +> D¢(y0) -

D'(Yo) = D¢(Y0).

Remark 1.8: The proof above actually shows that if L +u in c(0), then
for all p e D+u(yo) (resp. D-u(yo)) there exist y e 0,

p, © D+un(yn) (resp. D'un(yn)) such that Y, *y p, *p. In other

ol
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2. Uniqueness for u + H(Du) = £ in N",

We now consider the uniquenss of viscosity solutions of

i ,_ (2.1) u+HDU) =€ in B .

| Of course, (2.1) is a very special case of (0.1): take m = n, y = x,
Fly,t,p) = ¢t +'n(p) - £(y). We will prove the following
Theorem 2.1: Let u, v, £, g, H € C(R®). Assume that u, v are bounded
and f, g are uniformly continuous on R’. Assume that u and v are
viscosity solutions of, respectively, u + H(Du) = £, v + H(Dv) = g in R".

Then we have

(2.2) sup (u-v)+ < sup (f-g)+ .
. 2"

Remark 2.1: By symmetry, we also have

sup (v-u)+ < sup (g-£)+

Rn nn

and thus Ftu-vl € If-gl, where Ihl = gup |h(x)| is the norm on the space

| "

cb(n") of bounded continuous functions on RP.

Proof of Theorem 2.1: We begin the proof by assuming the extra conditions
(2.3) lim u(x) = lim wv(x) =0 .
I x|+ Ix|+e

This will keep the ideas clearer; later the full result is established.

We choose a function B8 e c.(ln) with the properties
(2.4) 0<B< 1, B(0)=1, B(x) =0 if |x| > 1 .
Let M = max(lul,dvl), € >0, and let ¢ : - xR' + R be given by
(2.5) ®(x,y) = u(x) - v(y) + 3MB (x~y) ,
vhere

(2.6) B (s) = B(F), for zer" .




By (2.3) - (2.6) and the choice of Be' lim sup ¥(x,y) € 3M. In fact, off
Ix|+]y|+e

the support of Be(x-y). ® < 24 while if |x| + |yl *+ * on this support,
then |x| and |y| +# . We may assume that
u(x) > v(x) for some x, since (2.2) clearly holds if this is not the
cagse. But then

(x,X) = u(x) = v(x) + 3MB_(0) > M .
Therefore ¢ assumes its maximum value at some point (xq,yq) © 2 x le
i.e.
(2.7) O(xo,yo) - u(xo) - v(yo) + 3MBe(xo-yo) 2 u(x) - vi(y) +

+ 3uBe(x-y) for all (x,y) € R x £ .

Moreover, lxo-yol € € sgince Be(xo-yo) > 0 Dby the above.

Now X, is a maximum point of x® u(x) - (v(yo) - 3nBc(x-yo)) and
thus, by assumption,
(2.8) u(xo) + H(-BM(DBe)(xo-yo)) < f(xo) .
Similarly, y, is a minimum point of y » v(y) = (u(xo) + 3!88(80-7)) and so
(2.9) viyy) + n(-sn(nse)(xo-yo)) > glyy) -
Together (2.8) and (2.9) yield
(2.10) u(xo) - v(yo) < f(xo) - g(yo) .
For x e I

u(x) = v(x) + M = d(x,x) < O(xo,yo) < u(xo) - v(yo) + 38 ,

so, by (2.10),

sup(u(x)-v(x))" < (uxy)-viy )" < (£(xg)-gly,))"

nn
< !sup(f-c.x)+ +. Ig(xo)-q(yo)l
Rn

< sup(£-g)* + w (e)
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where ug(‘) is the modulus of continuity of g. Now (2.2) follows upon our
letting € *+ 0.

The extra assumption (2.3) was used to guarantee that ¢ had a global
maximum point (x,yy). To treat the general case, choose § >0 and then
(xq,y4) so0 that

(2.11) (x,,yy) > sup O(x,y) -6 .

n_n
R xR

® n n
Now chocse [ € C (R X R) such that

0 €L <1, Ux,y,) =1, Ux,y) =0 if Ix-x,l2 + Iy-y,l2 >1 .,

(2.12)
IDg| €2 4n R x R* .
Finally set
(2.13) Y¥(x,y) = ®(x,y) + 28Z(x,y) = u(x)-v(y) + M8 (x~y) + 28¢(x,y) .
We claim that Y has a global maximum point (xo.yol enr® x 2. Indeed, from
(2.11) one deduces
'(81,y1) - 0(:1,y1) + 26§ >sup ¢+ 68 ,

whereas

lim sup Y(x,y) € sup ¢

Ixl+|y|+=
Moreover, with x, (xg,yq) as above,

) > ulx)=v(x) + 3M + 285(x,x)"

ulx,)-viy,) + 3uﬂe(xo-yo) + 26C(x°'yo
whence
2M + 3u8e(x°-y°) +28 > 3m .
We conclude that
(2.14) Ixo-yol <€e if M> 28 .

Next, using the assumptions on u, v as above, one deduces

u(xo) + n(-3MDBe(x°-yo) - ZGDxC(x )) € f(xo)

0'Yo

and




v(yo) + B(-3HDBc(x°-y°) + 26DYC(x°,y°)) > g(yo) .

These imply
(2.15) u(xg)=viyy) € £(xy)=gly,) + “n,:"" '
where un : denotes the modulus of continuity of H on

’

(tEer 1€l € r} ana :-ulDBcl-teG .
Therefore for x € R®, we deduce
u(x)=v(x) + 3% € u(x)=-v(x) + 3IM + 280(x,x) = ¥(x,x) <

< ¥(x ) € u(xo)-v(yo) + 3N + 28

0'¥Yo
+
< Sp (£=g) + mg(c) + un'r(“) +26 + 31 .

We conclude upon sending § + 0 and then € + 0.

Remark 2.2: It is worth noting that the essential ingredients of the above
proofs are, in fact, general results on the semidifferentials of
u,v e cb(n"). Indeed, we actually proved the following in the course of proof

of Theorem 2.1:

Proposition 2.1. Let u,v € C(R").

(a) If u, v satisfy (2.3) and sup (u-v) > 0, then for each Y > 0 there
2
exist XqeYg € - satisfying

u(x,)=v(y,) 2 sup (u=v), Ixg=yqol < ¥

n
(2.16) R

and D+u(xo) n D’v(yo) is not empty .

(b) Let u,v e Cy(X") and sup(u-v) > 0. Let N = max(lul,ivi). Then there
is a constant K > 0, independent of u and v, such that for 0 < Y,

A € 1 there are Xq:Yg © o satisfying

15~
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(1) Ixo-yol <Y and u(xo)-v(yo) > sup(u-v) - AN ,
(2.17) {(i1) thexe exist p e D+u(xo). qe D.v(yo)

satistying |Ipl., lq| € m(-$-+ A) and |p—ql ¢ xMM .

Of course, if u,v € 1 (®') in case (a) ana if X, is a maximum poi:;t
of h=u-v, then x, =y, solves (2.16) with Y = 0. The ¢! version of
(2.17) is that if h e c'(®) n cy(R), then one can solve h(x,) > sup h - v,
th(xo)I <Y for each Y > 0. The unigqueness result Theorem 2.1 is an easy
consequence of Proposition 2.1. For example, if u,v satisfy (2.3) and are
viscosity solutions of u + H(Du) = £f and v + H(Dv) = g respectively, we
then deduce

u(x)) + H(p) < £(x)), vly,) + H(p) > gly,)
where x,, Yy, are as in (2.16) and p is the common element of D"'u(xo)

sup(u-v) € f(xo) - g(yo)

n
R

< sup (f-g) + Wg(Y)

3

and we conclude by letting Y + 0.
The point of these remarks is that proofs of facts about viscosity
solutions can in fact be regarded as applications of general results

concerning the generalized calculus of the semidifferentials D*, D~ to

problems at hand.

i e N Sl methen s s



3. Existence of Viscosity Solutions.
To demonstrate the existence of viscosity solutiong (and also explain the

name of these solutions) we quickly reprove the following

Theorem 3.1: Let € > 0, and let !e(y.t.p) be a family of continuous

functions such that re(y,t,p) converges uniformly on compact subsets of
0 xRX K" to some function Fly,t,p), as € goes to 0. Finally, suppose
u® e c?(0) 1is a solution of
-cAu® + re(y,ue, pu®) =0 in 0
and let us assume that the u° converge uniformly on compact subsets of 0

to some u € C(0). Then u 4is a viscosity solution of (0.1).

Remark 3.1: This result is proved in (2] (Proposition IV.1).

Proof of Theorem 3.1: Let us check (0.7) first for ¢ € 02(0). Assuming that

u-¢ has a local maximum at y, € 0, choose { € ¢ (0) such that
0€L <1 if y o Yo' C(yo) = 1. Obviously u - (¢-f) has a strict local
maximum at y, € 0 and thus for € small enough, ue = {($~=7) has a local
maximum at some y € 0 and Ye e3p Yo+ But at the point y =y, we have
Du®(y,) = D($=C)(y ). Bu(y,) € A(4=E)(y,) 1
therefore
P, (v ,u (y,), D($=5)(y,)) € eB(4=T)ly.) -
We may conclude since ue(ye) + u(yo), D(Q'C)(ye) + D(¢-C)(Y°) - DNYO):
€8(¢-3)(y,) * 0. Now, if ¢ €C'(0) and if (u-¢) has a local maximum
at yp € 0, let us then prove (0.7). Take ¢, © c2(0) such that ¢, *¢
in c'(O) and, as before, choose [ @ C.(O) such that 0 € L ¢ 1 1if
y # Yoo ;(yo) = 1, For n large enough, u - (On-C) has a local maximum at
some point y, € ( and Y, * Yoo BY the argument made above, we know

F(yn,u(yn).non(yn) - DC(yn)) <0 .

-17-
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We finish by noting Mn(yn) - DC(yn) e DO(yo) - Dt(yo) = D’(yo).

As an illustration of the above result, we prove

% Corollary 3.1: Assume H : R *+ R is continuous, A > 0. Then for each

{ fe BUC(I“)(') = X there exists a unigque viscosity solution of u @ X of

u + AH(Du) = £(x) in R". Let us denote this solution by us= th. Then for
all f£,g € BUC(R"), we have

(3.1) 1R, 2R, )1 < 1(e-™1 .

Proof: The uniqueness and the estimate (3.1) are immediate consequences of
Theorem 2.1. To prove the existence, we consider the approximate problem
(3.2) w® + AH(DL®) - €u® = £ 1o B°

vhere H,£° e c (X') anda B, 2. H in c(@), £ 3 f in .

Routine P.D.E. arguments imply the existence of a unique smooth solution

u® e BuC(R") (see for example (7], [2], [8]). 1In addition if v‘ € X solves

ve + An(bvs) - eAvc - qc in 2° .

the maximum principle yields
(3.3) 1€-vC1 < 1e%-g%1
If we take ge(x) - ze(x-ry) for some fixed y € ln, we obtain 2

sup [u€(x)-uf(x+y)| € 1£5-¢51; that is, T

(3.4) U“C(') < “tt(.’ .
Thus the set {u'} is bounded in cb(l”) and equicontinuous, and there

exists € 3 +0 and u € X such that u‘j ‘5 U locally uniformly. Now recall

Theorem 3.1. *
o

Remark 3.1: For more general existence results, we refer to P. L. Lions (8]. .

(*) ,
puc(®®) = {u e cb(l"), u is uniformly continuous on R"},




comraT IR .

As a final result in this section, we obtain an estimate on a bounded
viscosity solution u of
(3.5) u + H(Du) € £

under the assumptions

(3.6) Ia(p)| < Lipl, pe R* ,
and
(3.7) I£(x)| € n-bl", xer®

wvhere L, a, b are nonnegative constants. Set
(3.8) vix) = ce

where ¢, 4 > 3. Clearly

(3.9) D v(x) =

Thus v is a viscosity supersolution of v + H(Dv) = £ provided that

-3d|x| x
"—l') >f(x) for x4 0 .

CO-dlxl x

(3.10) + H(~-cde
In view of (3.6) and (3.7), the estimate (3.10) is valid provided

ce~dIXl _ o cag-aixl , -blxl

or, equivalently
c1 - 1d) > ae'd P xl

If A<b and LA <1 we conclude that v = a/(1 - 1d)e~dI%l 44 4

supersolution of v + H(Dv) = £, The proof of (2.2) of Theorem 2.1 used only
that u is a subsolution and v is a supersolution; so we conclude that

(3.5), (3.6), (3.7) imply

a .-dlxl

(3.11) u(x) ¢ for 4<b, A< 1 .,

1-L4
Compare this with the proof of (6, Lemma 2.2].




4. Uniqtionon for wu, + H(Du) = 0.

This section and the next one concern the Hamilton~Jacobi equation
(4.1) u + HDW =0 in R x (0, ,
with the initial condition

(4.2) u(x,0) = u (x), x € .

According to our definitions and to Theorem 1.1, u € C(ln x (0,T)) is a
; viscosity solution of - :
(4.3) u + H(Du) = 0 on R x (0,T) |
provided that, for every ¢ € (:1(ln x (0,T)), we have ’t + H(D$) € 0 (resp.

> 0) at local maxima (resp. minima) of u-¢. We will prove

Theorem 4.1: Let 0 < T <* and let u,ve BUC(R" x [0,T)) be viscosity

solutions of (4.3). Then
sup  (u=v)* < sup (u(x,0) - vix,0n* .
®' (0,T] R

Remark 4.1: The method of Section 3 is easily adapted to prove that if .
uy € BUC(R®), then (4.1), (4.2) has a unique viscosity solution u such that
u e Buc(R® x [0,T]) for every 0 < T < ®. This will also follow from Section
S5 and nonlinear semigroup theory.
Proof of Theorem 4.1: We will give the proof in the general case. However,
let us first dispose of the following technicality.
Lemma 4.1: Let 0 < T <* and let u e C(x® x (0,T)) be a viscosity
solution of (4.3). If ¢ € c (8" x (0,T]), then at each local maximum point
(resp. minimum point) of u-¢ on R" x (0,T], we have: 5

’t + B(D$) €0 (resp. > 0) . L

Proof: The point is that assumptions on (0,T) imply conclusions on (0,T);

this is because of the special dependence of the equation on the time .

derivative. PFor example, we prove that if (x9,T) is a local maximum in

B x (0,71 of u-¢ with ¢ € c'(2® x (0,7]), then

20~




Ot(xo,T) + H(D¢(x°,T)) < 0. As observed many times above, we may assume
(xo,m) is a strict local maximum of u-¢ on K x (0,T]. Then we choose
M,r >0, 0<xr<T, 80 that

(4.4) u(x,t) = ¢(x,t) € ulx,,T) = $(x,,T) = u

for 1

(4.5) (x,t) e L {(x,t) s Ix-xol >r and 0<T=-¢t <0, |x-x°| <r} .

If € > 0 1is small, it is then obvious to see that te(x,t) = u(x,t) - i
d(x,t) - t»:("l'-t:)-1 has a local maximum point (xe'te’ such that te < T and :

(xe'te) e:o (xo,T). By assumption we then have

¢ (x_,t.) +

e (Xerte + H(D$(x_,t.)) <0 .

2
(T-te)

g

s cre

This implies
Ot(xe,te) + H(DQ(xe,te)) <0

and the result follows upon letting € + 0.

We may now begin the proof of Theorem 4.1, which involves the

construction of a rather complicated "test function". Define ¢ by

(4.6) sup (u~-v) = gup (uo(x)-vo(x)) +0 ,
R"%[0,T] R

where here and below u, = u(+,0), Vo " v(e,0). If O = 0, there is nothing

to prove, and 80 we may assume 0> 0.

Choose 8 € c.(lP X R) so that

0<B< 1, B(0,0) =1 and

(4.7)
|2 + t2 >1

B(x,t) =0 if |x
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set B_(x,t) = s(f,f) and M = max(lul,Ivl), where Ihl denotes the norm
of h in cb(l? x [0,T}) (note that since ¢ > 0, M > 0). Next, let A > 0

be fixed and define ¢ : R" x R® x (0,T] x (0,T] *+ R by

(4.8) ®(x,y,t,8) = u(x,t)=-v(y,s) = A(t+s) + (5M + 2XT)Be(x-y,t-s) o

If ¢ attains its maximum on n?“ x [O,T]2 at some point, the proof is easily

completed, but this need not be so. Therefore we choose § > 0 and then

2n 2
(xo.yo,to,so) e R x [0,T] go that

(4.9) O(xo,yo,to,so) >supé -6 .
The first claim is that if A, € and § are sufficiently small, then for
some U > 0

(4.10) to’so >y,

where u 1is independent of A, €, 8. To see this, first note

®(x,y,t,s) € 2M if Ix-yl2 + It--sl2 > 52

(4.11) sup ¢ > sup &(x,x,T,T) > 3M .

l‘.an[o',mz IP

2

|2 + (f_o-so)2 < € + Therefore for § < M

Hence if &§ < M, then Ixo-yo
'(xo'yo’to'so) = u(xo.to) - v(yo.so) - A(t°+so) + (5M + ZAT)Be(xo—yo,to-so)
< u(xo,to) - v(xo,to) - A(t0+so) + SM + 2AT + uv(e)

< u(xo,O) - v(xo,O) - x(t°+ao) + SM + 2AT + m“(to) + uv(to)

+ wv(e) .
Since on the other hand we have, in view of (4.6),
sup #(x,x,t,t) > sup(u(x,t) - vix,t)) + 5M =
- sup(uo-vo) + 0+ 54 , )
we finally obtain
207 + u“(to) + uv(to) + mv(e) >o0-68 . ¢

Now if § < 0/4, € is small enough to force mv(e) < 0/4, 2AT < 0/4, and

is chosen so that wu(ﬁ) + wv(E) €6/ for 0 < § € u, we conclude ty > u. .




Similarly we obtain s_ > 4 and (4.10) is proved.

0
» _2n 2
Next select [ € Cc (R x [0,T]") satisfying 0 € § < 1, C(xo,yo,to,lo) =1,
g=0 if Ix-xol2 + ly-yolz + |t-t°|2 + |s-l°|2 > u2/4. Ve
Y(x,y,t,8) = &(x,y,t,s8) + 26C(x,y,t,s). Since Y € & off the support of §
and since
¢ attains it maximum at some point (x,,y1,t1,l1), which lies in the support

of {. Thus t,, s, » u/2. But (x1,t1) e R x [0,T] is a maximum of

1
(x,t) *+ u(x,t) - v(y1,l1) - A(t+a1) + (5M + ZAT)Bc(x-y1,t-s1) +
25C(X.y1,t,l1). so that Lemma 4.1 implies
aae
A = (5M+2)T) T (x1-y1,t1-s1) + 26¢t(x1.y1:t1.81) +
+ u(-(5u+2xr)nx8e(x1-y1.t1-s1) + 26DKC(x,,y1.t1,s1)) <0 .
Similarly,

28
A = (SHAT) o5 (x,-¥,.t ~8) + 20T _(x,y st ,8,)

+ H(-(5M+2AT)Dx8e(x1-y1,t1-s1) + 26Dyc(x1,y1,t1,s’)) >0 .
Combining these two inequalities and letting 6 + 0, we derive A =0, a

contradiction.
(]

Remark 4.2: The agsumption u,v € BUC(R" x [0,T)) was used in the proof, but
minor modifications allow one to weaken this to Uy, € BUC(R®),

ui{x,t) * uo(x). vix,t) * vo(x) uniformly on R® as t + 0.

Remark 4.3: Theorem 4.1 is a special case of [2, Theorem V.2]. The proof in

[2] is, however, only indicated and involves a more cumbersome comparison.

S8ee [2, Section V.3] concerning domains of dependence.




Definition: We say that u @ X belongs to D(A) (the domain of A) if u is

5. The Semigroup Approach. , ]

Let H e C(IP), and X = BUC(R"). We now realize the formal expression

“H(Du)" as a nonlinear operator on X: 1

a viscosity solution of
H(Du) = £ in B* ,

for some f € X. We denote by Au the set of all such f e X. i

Obviously D(A) > {u € X, Du € X} (because of the consistency result

Theorem 1.2) and so D(A) = X.

Remark 5.1: Except in very special cases we do not know whether A 1is single

valued. (See L. C. Evans [g] when H is uniformly continuous on R?; the
case wvhen H(p) + ® as |p| + @ isg easily deduced from the results of M. G.
Crandall and P. L. Lions [2].) Por simplicity, we write as if A were single
valued below.

Proposition 5.1: A is an m-accretive operator on X.

Remark 5.2: See P. Benilan, M. G. Crandall, A. Pazy [1] or L. C. Evans [5,

appendix 1] for definitions.

Proof of Proposition 5.1: In view of Corollary 3.1 we have R{I + AA) = X

(for A > 0) and by (3.1)
lu=vl € lu-v + A(Au~-av)Il

if A > 0, u,v @ p(a).

Proposition 5.1 implies by the Crandall-Liggett generation theorem (cf.

[1]) that A generates a nonlinear semigroup of contractions (S(i:))':>0 on

X and
(5.1) S(t)u, = 1im (I+AA) ™, , u. € X = D(A) ,
0 0 1]
nyee
ni+t
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uniformly for t in bounded subsets of (0,%). Furthermore, the mapping
t» S(t)u0 is continuous from [0,®) into X.
In general the semigroup generated by a (nonlinear) m-accretive
operator A can be regarded as a "mild” solution of the evolution equation
du
at + A =0 (t>0) , u(0) = u, 7

see the forthcoming book of P. Benilan, M. G. Crandall and A. Pazy [1]. For

the case at hand a stronger interpretation is possible:

Proposition 5.2: Assume u, € X. Then
u(x,t) = (S()ug)(x) 0<t<T, xeR
is the viscosity solution of (4.1), (4.2)
Proof: Assume ¢ € C‘(IP x (0,7)) and u - ¢ attains a local maximum at
(xo,to) e R" x (0,T). We may as well assume (xo,to) is a strict local
maximum of u - ¢ in view of arguments used above.
For each € > 0, consider the step function ue(t) solving

€
% {u€(t+e) - ()} + AuS(t+e) =0 >0
(5.2)
w(t) =u, if 0<t<e .
We may assume to # k€ for any integer k. Since ue(t) +* S(t)uo uniformly
on {0,T)] in X as € + 0, ue(x,t+e) - ¢(x,t) has a local maximum at some

€ € € € n € €
point (x ,t ), such that (x ,t ) eR x (0,T), x e:o Xy t C:O to. Hence

(5.3) Au® (t+€) - A9 » 0 at X
according to the definition of A (note ue(-+e) € D(A)). Also, if € |is
small enough, we have

ol e - o) > 1 005 - pxfefeen)
Combining this inequality with (5.3) we deduce

ab(x" %) = moax%,e5)) € 2eox®,e8-e) - 00xt5n)

If we let € * 0, then, since (xe,te) + (xo,to), we finally obtain

=25




¢t(xo,to) + H(DO(xo,to)) <0 .
The opposite inequality has an analogous proof should u-¢ attain a local

minimum at (x,,t1).

This result corresponds to [2, Section VI.3].
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